

3 November 2025

New Zealand Food Safety
Ministry for Primary Industries
PO Box 2526
Wellington, 6140
organicsconsultation@mpi.govt.nz

Subject: Organics: Inputs notice for Generic Substances

The Bioenergy Association Gaseous Biofuels Interest Group wishes to provide feedback on the proposed organics inputs notice, specifically inputs for fertilisers and soil conditioners.

This submission is from the Bioenergy Association and should be read in conjunction with any individual submissions from the Association's members. Members are encouraged to make their own submission on matters which are often more detailed and specific arising from their operational experience and activities.

The recycling of organic material to produce biogas and biofertiliser is currently not large in New Zealand but is being encouraged by Government¹. This is largely driven by the demand for renewable energy and gas; the replacement of imported fertilisers; and/or reduction of emissions to air.

Digestate Biofertiliser

The recycling of organic material in an anaerobic digester facility produces biogas, biofertiliser and renewable CO₂. The criteria² for digestate biofertiliser to be classified as a safe and effective fertilizer is set out in a Producer Accreditation Scheme³ established by the Bioenergy Association. The criteria were developed using an experts Steering Group including government agencies, scientists, regulators and farmers.

Digestate biofertiliser presents an opportunity to reduce dependency on imported fertilisers while simultaneously addressing organic waste management challenges.

The fertilizing effect of digestate biofertiliser on their farms can be assessed by farmers by use of the Overseer software for nutrient analysis of their farm.

The benefits of New Zealand produced biofertiliser from organic wastes are:

- Produce locally-sourced, nutrient-rich fertiliser that replaces imported synthetic alternatives
- Dramatically reduce the carbon footprint of agricultural inputs through circular economy principles
- Generate renewable energy (biogas) as a co-product of the fertiliser production process
- Divert organic waste from landfills, eliminating potent methane emissions from decomposition

² DBPAS 05: Guidelines for the Production of Digestate Biofertiliser for the Application to Land (the Digestate Guidelines). https://www.biogas.org.nz/resource/dbpas-05-guidelines-production-of-digestate-biofertiliser-producer-accreditation

¹ https://www.bioenergy.org.nz/news/nz-govt-statement-on-biogas

 Build resilience in our agricultural supply chains by reducing reliance on volatile international fertiliser markets.

In addition with specific choice of feedstocks by the producer the biofertiliser can meet organic certification standards. Organic certification is not merely theoretical but is practically achievable at scale when appropriate quality assurance systems are implemented.

Producers who produce organic biofertiliser will provide food producers with a significant competitive advantage in international markets. Our primary sector exports command premium prices in markets that increasingly value:

- Organic certification and production methods
- Low-carbon production with reduced synthetic inputs
- Circular economy credentials and sustainable practices
- Climate-positive agricultural systems

Trace elements in AD processes

Certain trace elements, including nickel, are essential for the enzymes used in anaerobic digestion to convert organic matter into biogas. Without adequate trace element availability, the AD process becomes unstable or fails entirely, preventing both renewable energy generation and digestate production. The controlled, precise addition of trace amounts of nickel is therefore an operational necessity to maintain process stability and efficiency. The quantities required are extremely small and pose no environmental or health risk—they simply ensure the biological process functions as nature intended.

The inability to add essential trace elements would compromise AD facility performance, potentially forcing operators to either accept suboptimal operation or use feedstocks that may be less suitable for organic certification purposes. We therefore propose that controlled trace element addition for process optimisation should be recognised as acceptable practice within organic systems, consistent with the biological requirements of anaerobic digestion.

Recommendation

We propose to expand table 3 (section 3: fertilisers and soil conditioners) highlighted as follows:

Substance or class of substance	Additional circumstances and conditions
Plant and animal household waste	Only for use as compost material and/or anaerobic digestion feedstock material
Sulphates, carbonates, oxides, or silicates of cobalt, copper, iron, manganese, selenium, molybdenum, zinc, or nickel*	Only for use as trace elements and micronutrients

Brian Cox

Executive Officer

Bioenergy Association.

