

Wood as a fuel & drying of wood chips

Mikko Helin North Karelia Polytechnic

June 14th 2005, Joensuu, Finland

Why use wood as a fuel?

- a renewable energy source, grows by converting solar energy
- $\circ\,$ leaving wood to decompose releases as much carbon dioxide (CO2) as when it is combusted
 - \rightarrow wood is therefore CO₂-neutral as a fuel
- mainly locally-produced energy sources
 - \rightarrow independence from exported fuels
- transportation distances are usually relatively short

Wood as a fuel

 \circ carbon content \approx 50 %, nitrogen content \approx 6 %

o ash ≤ 1 % (typically)

high volatile content (≈ 80 - 85 %)

 \rightarrow long flames, big furnace size

heating value of wood in average
 ≈ 19 MJ/kg ≈ 5,3 kWh/kg

 different forms of wood fuels, e.g. split billets, wood chips and pellets, saw dust, bark, etc.

Wood as a fuel...

moisture lowers the net heating value

- at harvest the moisture content of wood is around 50 % (total weight)
- to evaporate 1 kg of water takes about 2,5 MJ/kg H₂O (0,8 kWh/kg H₂O)
- e.g. 2 kg of wood chips, moisture content 50 %
 - = 1 kg dry-matter of wood + 1 kg water
 - \rightarrow net heating value \approx (19 2,5) MJ \approx 16,5 MJ \rightarrow 8,25 MJ/kg of fuel
- moisture content affects greatly on net heating value of wood fuel (see tables 1 & 2)

Net heating value of wood

• Table 1. Net heating value of wood in average

moisture content %	per kg of fuel MJ/kg kWh/kg
0	19,0 5,3
10	16,9 4,7
20	14,7 4,1
30	12,6 3,5
40	10,4 2,9
50	8,2 2,3
60	6,1 1,7

• Table 2. Net heating value of 1 loose-m³ of wood chips, dry matter weight 180 kg

moisture content %	kWh/loose-m ³
10	940
20	920
30	890
40	850
50	800

Small-scale boilers vs. moisture content

- in practice the heating effect of small-scale boilers decreases even more
- the total efficiency of the boiler (see figure 1) decreases rapidly when the moisture content rises (boiler tests are usually made with fuel that contains 30 % or less moisture/water)
- moisture content decreases conversion efficiency into energy and increases gaseous emissions (incomplete combustion)
- \circ when using dry fuels the boiler stays cleaner, malfunctions and need for maintenance decreases \rightarrow uptime increases

Moisture content vs. boiler efficiency

• Figure 1

NORTHERN

An average efficiency of one 50 kW boiler with different moisture content of chips

Example of a small-scale boiler

- We can calculate the amount of heat we will get out of 1 loose-m³ of wood chips with two different moisture contents using the boiler in the previous slide:
- a) chips: moisture content 50 %, net heating value ≈ 800 kWh/loose-m³, boiler efficiency: n ≈ 62 %
 b) chips: moisture content 30 %, net heating value ≈ 890 kWh/loose-m³, boiler efficiency: n ≈ 78 %
 - a) $E_{heat} = 0.62 \times 800 \text{ kWh} \approx 500 \text{ kWh}$
 - b) $E_{heat} = 0.78 \times 890 \text{ kWh} \approx 700 \text{ kWh}$

You get 40 % more heating energy!

Drying of wood chips

o traditional drying

- whole tree or chip pile
- in the open or covered
- artificial/forced drying of wood (usually a fan is been used to produce a high drying-air flow)
 - un-heated drying-air
 - heated drying-air e.g.
 - o solar energy
 - o boiler water energy
 - o flue gas energy

Drying system using solar energy to heat the drying-air

Dryer models...

Drying system using flue gas to heat the drying-air

Drying system using boiler water to heat the drying-air

Approximate investment costs

- small movable dryer using un-heated drying-air (capacity 70 loose-m³)
 - dryer building 2 000 €
 - fan 700 €
- medium size dryer using solar energy heated drying-air (capacity 300 loose-m³)
 - dryer building 15 000 €
 - fan 2 000 €

General specification for artificial drying

- air flow should be steady in the dryer and there is always a counterpressure when blowing trough a chip layer
- air flow rate with un-heated air is about 400 -500 m³/h per loose-m³ of chips
- height of the chip layer in the dryer is usually 0,8 - 1,5 m
- hole/opening density on the dryer floor should be at least 5 - 10 % of the floor area
- It is evenly important to make sure that exhaust air flow rate is big enough to remove the moisture from the dryer (otherwise the moisture condensates in the dryer).

Example...

- the drying time can be calculated approximately:
- chips: 80 loose-m³; moisture content: 50 %; bulk density 350 kg/loose-m³
- desired value of moisture content: 20 %; the amount of water to be evaporated: 130 kg/loose-m³ of chips
- air: density = 1,2 kg/m³; temperature = 20 °C; relative humidity = 60 %;
 1 kg of air binds about 2,0 g of water (2,40 g/m³ = 0,0024 kg/m³)
- drying-air fan: 5,5 kW; 400 m³/h_{air} per loose-m³ of chips
- drying efficiency: 90 %

It would take $\frac{130 \frac{kg_{H20}}{lcose - m^3}}{0.9 \cdot 400 \frac{m^3_{air}}{h} / lcose - m^3 \cdot 0.0024 \frac{kg_{H20}}{m^3_{air}}} = 150 h$

consumption of electric power = 828 kWh (10,3 kWh/loose-m³)
If drying-air is been heated +2 °C, water binding capacity will increase to 2,6 g/m³ and it would take now 116 hours. Decrease in consumption of electric power = 191 kWh (total consumption: 637 kWh, 8,0 kWh/loose-m³).

Conclusion

• drying of wood chips might be beneficial if

- charged by the amount of wood chips
- troubles with boiler when using wood chips with high moisture content
- existing building for the dryer (smaller investment)

• ???

Thank you for your attention!

