

Presentation to the NZ Conference Future BioPathways

Rory Gilsenan, Canadian Forest Service October 2010

Outline of Presentation

- Context
- Background who/what/why/how
- Results
- Take-home messages
- Policy Implications
- Canadian Federal Support
- Next Steps

What are the major economic and social drivers for next-gen bioenergy?

- Financial and Economic Drivers
 - Energy security through energy diversification
 - Development of innovative Canadian technology
 - Forest Sector Economics revitalization!
- Environmental Drivers
 - Climate change
 - Improved air quality
 - Food vs. Fuel
- Socio-economic Drivers
 - Rural economic development
 - Economic diversification
 - Job creation
 - Sustainable communities

Countries/regions have established or intended biofuels mandates...

Canadian Forest Sector Snapshot

- Economic challenges in sector both cyclical and structural:
 - Employment: 267,300 jobs in Aug 2010
 - 136,000 jobs have been lost since 2003
 - (34% decline)
 - Economy: \$24 B contribution to GDP in 2008 (in 2002 \$)
 - down from \$31 B in 2005 (in constant 2002 \$)
 - Bankruptcy of Canadian firms
 - Exports: \$30.1 B in exports in 2008 (current \$)
 - down from \$37 B in 2003 (current \$)
 - 60% decline in North American newsprint consumption since 1999, eliminating 840,000 tonnes/yr

Drivers for Transformation in the Forest Sector

- Need for a new business model
- Shift to green energy and products happening globally, nationally, regional (climate change, energy security, etc.)
 - Foreign subsidies and mandates have major impacts
- High interest in Canada in forest bioenergy ...but decisions are being made with little information
 - Harvesting licenses for biomass removal for bioenergy
 - Long-term contracts for pellet plants, to ship pellets to Europe
- Many technologies being developed and promoted
 - Need to separate fact from fiction
 - What are the best options for the sector and communities?

Bioenergy technologies are at different stages of development

Adapted concept from: OECD/ IEA 2008 report: Deploying Renewables: Principles for Effective Policies (Paris), p. 25 and based on NRCan expertise.

BioPathways Project

- What are the real opportunities for new technologies and emerging products from wood fibre?
- Will these new products and technologies have similar financial and socio-economic contributions compared to traditional forest products?
- How might public policies and programs help support the forest sector in this transformation?

How: Six Lines of Inquiry

- Assess the "market readiness" of the emerging technologies.
- 2. Quantify key economic, social and environmental metrics associated with the main existing and emerging bioproducts;
- Analyze economic fibre supply;
- 4. Examine the market potential of emerging bio-products;
- Explore new approaches to managing the value chain and development of partnerships; and,
- Build capacity to manage innovation in the Canadian forest products sector.

Who: Collaborative Process

- Steering Committee
 - Leadership of FPI, NRCan (CFS, Energy, CANMET), BCMF, OMNR/OMNDMF, MRNQ, Ivey Foundation and FPAC.
- Project Team
 - Co-chaired by CFS and FPAC
 - FPInnovations
 - NRCan
 - FPAC
 - Don Roberts (CIBC)
- Selected bioenergy companies
- Large network of experts

What: The Forest Biorefinery

How: Sensitivity analysis using case studies

27 Products/technologies were originally examined in the 1st Phase of the Project – 16 traditional and 11 emerging

How: Metrics Analyzed

Financial	Social	Environmental
Revenue/ODMT	GDP Multiplier	Carbon Footprint (In process)
EBITDA/ODMT	Employment Multiplier	Others to follow (LCA)
Return on Capital		

How: Bioenergy Pathways Analyzed

Results: What is the best from

What is the best from both worlds?

What is the best from both worlds?

What is the best from both worlds?

- Some of the emerging products are better, but we have to be selective.
 - E.g., Small-scale gasification and pyrolysis oil for power looks attractive, while the pure production of ethanol via the bio-chemical process does not.
- The most promising future involves:
 - solid wood mills integrated with bioenergy at the back-end
 - pulp mills evolved into biorefineries, which produce a range of pulp/bioenergy/biochemical products
- Moving to the production of commodity bioenergy products is a necessary step in the forest industry transformation
 - Commodity bioenergy should be part of the biorefinery platform (i.e. integrated facility producing a range of products)
- Increased emphasis on those higher valued bio-chemical markets in future

Standalone or Integrate?

- Although there are a few exceptions, the emphasis should be on integration.
- Integration generally provides:
 - Higher ROCE
 - Higher employment base
 - More secure and lower cost supply of fibre (key issue in the capital markets.)
- Results underscores integration of new into traditional production facilities is far better for the production of both the traditional and emerging product.
- There is a compelling financial case for both the established and potential new entrant to co-operate.

- Simply selling bioenergy is generally not good enough in the long-run.
- However, selling bioenergy may still make sense in the longterm if:
 - If it is one of a series of products that are jointly produced in a biorefinery.
 - You are operating in a special environment characterized by:
 - Low delivered cost of biomass
 - High price for electricity.
- The best value will be created if you can exploit bio-energy's "battery-pack" and "optionality."
- The threat is that the competitiveness of bio-energy relative to other sources of renewable energy is expected to deteriorate over time.

Is There a Trade-off Between Financial Returns and Employment?

Carbon Analysis

- Purpose
 - Provide mill-level analysis for investment decisions
 - Provide product-level analysis for comparison with current products (e.g., fuels, power, structural products)
- Methodology
 - Direct
 - NG, Oil, other fossil fuels
 - Conversion carbon emissions (e.g., lime kilns, enzymes)
 - Indirect
 - Electricity varies by province
 - Fibre supply model harvest, transportation
 - Other LCA, carbon multiplier, sensitivity analysis

Biopathways: Key Take Home Messages

- The future of the industry lies in integrating new technology into the existing sector rather than replacing it
- New and emerging technologies offer some promising opportunities but no silver bullets
- Bioenergy is only part of the story with higher-value co-products being more promising & sustainable over the longer term
- The long -term viability of some traditional products in Canada is surprisingly strong
- A functioning, healthy solid wood sector is key...turning low-cost waste residues into diverse higher valued product streams
- There are tradeoffs in financial vs. socio-economic benefits and environmental indicators of different products/technologies

Implications for Public Policy

- Sector renewal will require a new business model as well as technological innovation on the part of the industry
 - Programs and policies should encourage new partnerships between the forest sector and energy, chemical and technology firms.
- Future of the industry likely lies with a mix of traditional and emerging products
 - Maintaining a viable lumber sector key
- Support for particular technologies or products can have unintended consequences on environmental and regional development objectives
 - Choosing winners and losers is a risky business (technologies, jobs)
- Investors will require sustainability of fibre supply...
 - Need to ensure environmental sustainability if we increase removals from forest
 - May require broadening of definition of forest sector

Canadian Federal Support for Forest-sector Transformation

- Transformative Technologies Pilot-scale demonstration (TT-PSD: Can\$40M)
 - Support development of technologies at the pilot stage
- Investments in Forest Industry Transformation (IFIT: Can\$100M)
 - Support for demo to pre-commercial technologies and partnerships with non-traditional industries
- Pulp and Paper Green Transformation Program (PPGTP: Can\$1B)
 - Supports "green" investments, including energy efficiency, renewable energy, etc.

Next Steps - Lines of Inquiry 4-6

- 4. Examine the market potential of emerging bio-products;
 - Levelised cost of energy vs. other renewables
 - Foreign markets and competition
- Explore new approaches to managing the value chain and development of partnerships; and
 - Cost reduction and logistics optimization
- Build capacity to manage innovation in the Canadian forest products sector.

Thank you

Questions/Comments?

Rory Gilsenan, Canadian Forest Service Natural Resources Canada Rory.Gilsenan@nrcan.gc.ca