

The New Zealand Institute for Plant & Food Research Limited

Stephen Trolove

Using computer models to produce maps

- » Computer models are helpful for estimating crop yields in areas where there is no experience growing the crop
- » Computer models are helpful for long term planning for biogas production

Predicting potential sorghum yield for Hawke's Bay

- » Use APSIM (a computer model developed in Australia, and modify it to suit New Zealand conditions)
- » Use long-term weather data and run simulations over 21 years
- » Plant 17th Nov, harvest 22nd March.
- » Predicted yields ranging from 18 32 tDM/ha
- » Long-term average yield was 26tDM/ha

Converting potential yields into a regional map

- We know the potential yield that can achieved in good soil. To estimate how these yields apply across a range of environments we use the Land Resource Information System (LRIS) database
- » The LRIS database has information on
 - » Current land use
 - » Growing degree days
 - » Soil water-holding capacity
 - » Erosion risk
 - » Slope
 - » Stones and rocks
 - » Drainage
 - » Salinity and pH
- » From this information we make up rules about how much these factors reduce potential yield. We call this a crop suitability coefficient, k. The lower k, the less suitable the land.

Map of suitability of Hawke's Bay for sorghum

The average suitability co-efficient for the region is 0.72

Converting potential yields into a regional map

Scaling the potential yield of 26 tDM/ha for sorghum by 0.72 gives 19 tDM/ha as an average regional yield.

Adding in 10t/ha for tick beans gives 29 tDM/ha/year

Using the figures from Huub's talk of 8,000 m³ methane/ha (from a 27 tDM/ha) we get a net energy gain of 210 GJ /ha

Assuming Hawke's Bay farmers put 10% of their suitable land area in biofuels crops, that's enough for 12% of rural New Zealand's transport fuel requirements

Nitrogen use

Sorghum with 100 kgN/ha

N/ha

Sorghum with 200 kgN/ha

27

1.2%

28 0.96%

Yield (tDM/ha)
N content (%)
N uptake (kgN/ha)

0.75% 203

27

300

270
*Source: Lincoln Farm technical manual

We didn't need more than 100 kgN/ha to grow a large crop

Comparing digestate with ammonium sulphate

Average of 100kgN/ha and 200kgN/ha plots

	Digestate	Ammonium sulphate
Yield (tDM/ha)	25	25
N content (%)	0.79%	0.96%
N uptake	195	237
(kgN/ha)		

Uptake of digestate was 82% of that of ammonium sulphate

