

Biomass in district energy Bioenergy Association

BY PEOPLE FOR PEOPLE

GDF SUEZ: The Business Lines

■ €87B (A\$120B) in 2013 revenues.

- 146,200 employees throughout the world:
 - Inc. 60,050 in power and natural gas
 - and 86,000 in energy services.
- 800 researchers and experts in 7 R&D centres.
 - COFELY

A presence in close to 70 countries.

Pomer

- No.1 Independent Power Producer (IPP) in the world.
- No.1 producer of non-nuclear power in the world.

• **117 GW** of installed

power-productior capacity.*

 7.2 GW of power capacity under construction.*

Natural gas

- **No.2** purchaser of natural gas in Europe.
- No.3 importer of LNG in the world.
- No.1 natural-gas transmission and distribution networks in Europe.
- A supply portfolio of **1,208 TWh**.

Energy services

- No.1 supplier of energy and environmental efficiency services in the world.
- No.2 supplier of water and waste services in the world.
- 186 district heating and cooling networks operated worldwide.

World Leader in Energy Services: A solutions provider close to its customers

Energy Services: Core Competencies

COFELY: the Brand of GDF SUEZ Energy Services

- We offer environmental and energy-efficient solutions to:
 - Industrial
 - Tertiary & commercial
 - Local authorities
 - Public administration and
 - Infrastructure
- customers through services which are:
 - Multi-technical (electrical, mechanical and HVAC engineering and system integration)
 - Multi-service (engineering, installation, maintenance, operation, facility management)
 - Multi-energy (renewable energy sources, gas, etc.)

Cowley Services

- A national provider of tailored HVAC & R (Heating, Ventilation, Air Conditioning & Refrigeration), energy & environmental solutions and essential services.
- A team of experienced technicians, engineers and project managers who are supported by a dedicated customer service and back office team.
- 10 offices located across New Zealand
- 150+ employees
- ISO 9001 accredited
- Operational provider and partner to Cofely

Green Building Council of Australia & Property Council of Australia: Winner Green Cities 2014

District Energy & Biomass

Leighton Properties: Kings Square

District Energy: What is it?

- The linking of thermal (heating and/or cooling) energy customers on a private energy network.
- Schemes can be:
 - Small, a precinct of a few buildings or campus
 - Large, city grids
- Thermal mediums:
 - Chilled water
 - Hot water (LTHW, MTHW)
 - Steam
- Networks are usually buried pipes:
 - Pre- or post- insulated steel pipe or
 - PEX (plastic)
 - <1°C per km</p>
- Fuel sources:
 - Conventional: gas, electricity, coal
 - Unconventional: biomass (solid, liquid & gas), geothermal, others

District Energy: Key Benefits & Challenges

- Compared to conventional (BaU) approaches, District Energy can provide a number of benefits for customers:
 - Energy Cost Savings (CAPEX, OPEX and REPEX)
 - Carbon Abatement
 - Space Savings in Buildings (chillers, heat rejection, boilers all removed from site)
 - Hygiene Benefits (noise, health, vibration, etc.)
 - Risk Transfer (outsourcing non-core business activity)
 - Reduced Water Consumption
 - Improved resilience
 - Future proofing

- Challenges:
 - Energy density of customers (kW and kWh)
 - Geographic proximity of customers to one another
 - Catalyst
 - Long term view
 - Cultural barriers
 - Economics (CAPEX, plant utilisation & optimisation, etc)

Biomass in District Energy

- Why use biomass?
- A. Achieve CO_2 savings compared to fossil fuels:
 - Low and zero carbon fuels
- B. Planning Requirements:
 - "Merton Rule", London
 - Building Regs, Part L

C. Allow fuel switching:

London Heat Map

- Depending on primary energy tariff, then proportion of energy supplied from particular fuel sources can be varied
- D. Lack of conventional fuels:
 - Availability of Natural Gas
 - Proximity to conventional utilities (electricity)
- E. Economic benefits:
 - Renewable Heat Incentive: RHI (UK)
 - Enjoy reduced GST/VAT rates (France: if >50% of fuel mix is biomass, then lower VAT)
 - Renewable Obligation Certificates: ROC (UK)
 - Reduced EU-ETS exposure

Challenges of Biomass in District Energy

- Investment in biomass solutions are made through:
 - balance investment risk against operational risk Against
 - Economic benefits (IRR and ROCE)
- Operational:
 - Energy density: (MJ/kg)
 - Reception & Storage facilities: (MJ/m³)
 - Size (if chip)
 - Handling systems
 - Plant efficiencies
 - Maintenance requirements and attendance
 - Air quality (especially in dense urban environments)
 - Transportation of fuel to site

Economic:

- Tariff
- Tenure of contract, long term fuel supply security
- Quality (moisture content)
- Quantity and Availability (on a long term basis)
- Indexation: coupled to equivalent conventional fuel
- Investment CAPEX, OPEX and REPEX

Overcoming Challenges

- Working Collaboratively with Suppliers
 - Some schemes are community based projects:
 - · Local supply of biomass
 - Centralised collection points
 - · Delivery and sorting of fuel stock
 - Long term contracts (5 10 years)
 - Educating of suppliers
 - Agreeing an indexation which is not decoupled for conventional fuels
 - Output specification contracting to control fuel quality:
 - Moisture content (tolerances)
 - Chip size (mass)
 - · Variability of supply
 - Direct management of supply chain
 - · Ownership of plantations and crops
 - Processing plants and mills
 - Specialist business managing procurement
- Developed Mass Supply
 - Significant volumes ex-North America (Canada)
 - · Co-firing thermal power plants (e.g. Drakes)

COFELY's investment in Biomass (in France)

- Cofely is operating at present more than 150 biomass energy centres in France.
- By enhancing as best as possible the value of the fuels available locally, COFELY uses in such energy centres use a wide diversity of biomass fuels:
 - wood chips
 - ground pallets
 - Sawdust
 - flax shives
 - Barks
 - wood granules and
 - waste from first and second wood processing industries).
- Such energy centres are servicing in particular:
 - Businesses
 - blocks of council flats
 - Hospitals
 - homes for the elderly and
 - secondary schools,

Eco-district GINKO (Bordeaux – France)

- Key figures:
 - 2,200 homes / 32 hectares
 - 2 schools, 28 000 sq meters of shops, 25,000 sq meters of offices and services
 - Design, finance, build, operate and maintain as part of the urban project "2030 Bordeaux: to the great Bordeaux, a sustainable city" the schemes which supply heating
- Cofely solutions:
 - Creation of a district heating network feeding the whole neighbourhood
 - Biomass boiler
 - Saving of 3,500 tons of CO₂ per year thanks to renewable energy sources
 - Commit to producing all heat from renewable energies
 - Guaranteed savings on the energy bill

Industry Grand Couronne (France)

- Key elements:
 - Start operation date: January 2012
 - Duration of the Contract: 5 years
 - Client: Saipol Industry
- Cofely solutions:
 - Boiler capacity: 55 MW & 66 t/h of steam 510°C & 92 bar
 - Biomass consumption: 160,000 t/yr, i.e. 25 to 30 trucks / day
 - Capacities of TAG / ACC / SG: 9 MWe / 6 MW / 30 MW
 - Global efficiency: 75%
 - Number of suppliers: 18 (with 11 in the site)
 - Duration of project: 40 months
 - Duration of commercial contracts 20 years

Cofely East London Energy: Queen Elizabeth Park

Site characteristics:

- Sporting venues Velodrome, Stadium and Aquatics
- Athletes Village (240 000 m²) being converted into 3,000 apartments in Legacy
- Westfield Development (180 acre area)
- Westfield Shopping Centre largest shopping centre in Europe
- 7,000 additional homes being constructed in Legacy
- Media and Press Centre being converted into a data centre
- Cofely solutions:
 - Construction and operation of energy centres
 - The Energy Centre Heating plant:
 - Gas reciprocating CHP engines
 - Biomass boiler (3.5MW) / Dual Fuel (Gas & Oil) boilers (80MW)
 - Large thermal storage tanks (750m³)
 - Reduction in CO₂ emissions / Reduction in energy costs
 - The Energy Centre Cooling plant:
 - Absorption chillers (8MWr)
 - HV Electric chillers (ammonia) (49MWr)
 - Open Cooling Towers
 - Large thermal storage tanks
 - Total Capacities : 92.5 MW Heating / 57 MW Cooling / 9 MW Electrical

Cofely East London Energy: Queen Elizabeth Park

Video

Industry: Michelin (Cholet – France)

- Site characteristics:
 - Diversity of production resources: biomass boiler plant, 10 MW, 22,000 tons of wood per year
 - Combined heat and power of 10 MW with a waste heat boiler of 24 MW equipped with a post/combustion/fresh air burner
 - Natural gas boiler 24 MW
- Cofely solutions:
 - Construction and operation of energy centres
 - Supply of fluids and power distribution, via operation and maintenance of existing installations and addition of new installations to optimize this supply
 - 12,000 tons CO₂ emissions avoided per year

GDF SVez

Bio-oil: Tagabé – Efate, Vanuatu

- 2x 4 MW MAN Diesel / Heavy Fuel Oil
- Mix with a maximum rate of 30% of copra oil
- Cofely has developed its own fuel supply chain (Copra)
- Injection regulated with the load
- No injection under 80% of load (3MW) because risk of :
 - Injectors dirtying and unburned deposit
 - Lubricant pollution
- Weekly analysis of the engine lubricant is required: TAN, TBN & viscosity because of the risk of lubricant oxidation and of injection system corrosion.
- The mix can reach 30% of copra oil but above this value consequences on operation & maintenance are unknown.

De-Risking the Project & Business Case

- Investment in biomass solutions are made through:
 - balance investment risk against operational risk

Against

- Economic benefits (IRR and ROCE)
- Proper and diligent investigation of Capital, Operational, Supply Chains and Technology
- CAPEX Risk Mitigation:
 - Use of Proven technologies
 - Due diligence on plant suppliers CAPEX and REPEX
 - GMP for installations
- Operational Risks Mitigation:
 - Spreading fuel risk across multiple fuel streams
 - Blending fuels and fuel switching
 - Understanding operational constraints and levers
- Economic Risk Mitigation:
 - Contractual
 - Indexation and forecasting

Christchurch District Energy Scheme

- Key Customers:
 - Christchurch City Council
 - Canterbury District Health Board
 - Canterbury Earthquake Recovery Authority
- Cofely is in a JV partnership with Pioneer Generation Limited, which has been appointed as Preferred Partners for the DES
- 30-year contract
- Road map to biomass
- Total forecast demand:
 - 17MW_{CHW}
 - 40 MW_{TH}

Challenges:

- Geology and stability of region
- Energy density and proximity
- Development risk

Vaughan Furniss Managing Director **Cofely Australia Pty Limited** Level 16, 379 Collins Street Melbourne VIC 3000

 Email:
 vaughan.furniss@gdfsuez.com

 Tele:
 +61 3 8614 1094

 Mobile:
 +61 487 22 44 64

