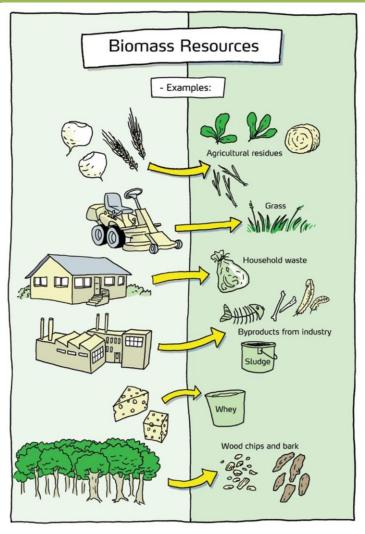


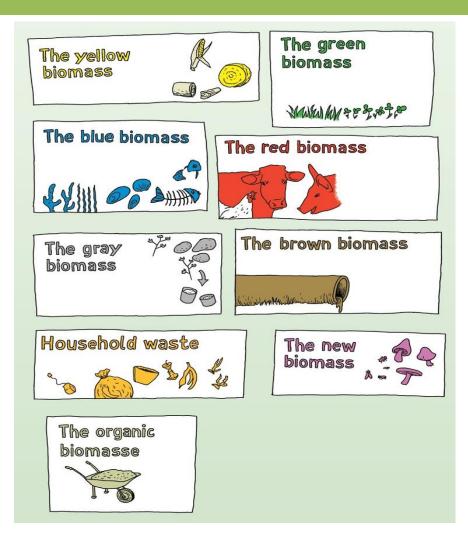
Ability of bioenergy and biofuels to reduce GHG emissions in NZ

Brian Cox Executive Officer, 24 October 2018

The opportunities


- Biomass energy for process heat
 - Wood harvest residues
 - Wood processing residues
 - Agricultural residues
- Use of waste to reduce methane
 - Create value from municipal and food waste
 - A resource we produce every day
- Use of biofuels for heavy transport

- Marine, heavy road vehicles, rail, aviation


Utilisation of renewable natural

resources

Biomass in many forms

Key messages

- Bioenergy and biofuels provide opportunities and are not fixing a problem
- We have large quantities of biomass and waste which can be used in the transformation to a low-emissions economy
- Based on proven technologies
- Under developed markets
- Complex biomass supply chain is manageable.

Is this a problem or an opportunity

What can be achieved

- Currently 11% of consumer energy is supplied from biomass.
- Including only process heat and use of waste this could increase to 15% by 2050 and reduce net greenhouse gas emissions by 3-4%.

but

 with biofuels use by heavy transport this could increase to 26% energy with 13% reduced greenhouse gas emissions.

Energy increase above 2017 levels

	Reduction of use of fossil fuels in process heat ^{1, 5} (PJ)			Methane reduction from waste to energy ² (PJ)			Emissions reduction from use of biofuels in		
							transport (PJ)		
Year	BA	Transit	Transfor	BAU	Transit	Transform	BAU	Transit	Transform
	U	ion ³	mation ⁴		ion ³	ation ⁴		ion ³	ation ⁴
2030	2	4	8	0	1.1	1.8	3	3	20
2040	5	11	17	0.05	1.5	2.5	6	6	48
2050	7	15	20	0.1	1.8	3.3	12	12	68

Greenhouse gas emission reduction below 2017 levels

	Reduction of use of fossil fuels in process			Methane reduction from waste to energy ² (kt			Emissions reduction from use of biofuels in		
	heat ^{1, 5} (kt CO2-e pa)				СО2-е	pa)	transport (kt CO2-e pa)		
Year	BA	Transit	Transform	BAU	Transit	Transform	BAU	Transit	Transform
	U	ion ³	ation ⁴		ion ³	ation ⁴		ion ³	ation ⁴
2030	200	400	700	0	180	320	200	200	1500
2040	500	1000	1500	+20	210	410	400	400	3500
2050	700	1300	1800	+40	320	515	800	800	5000

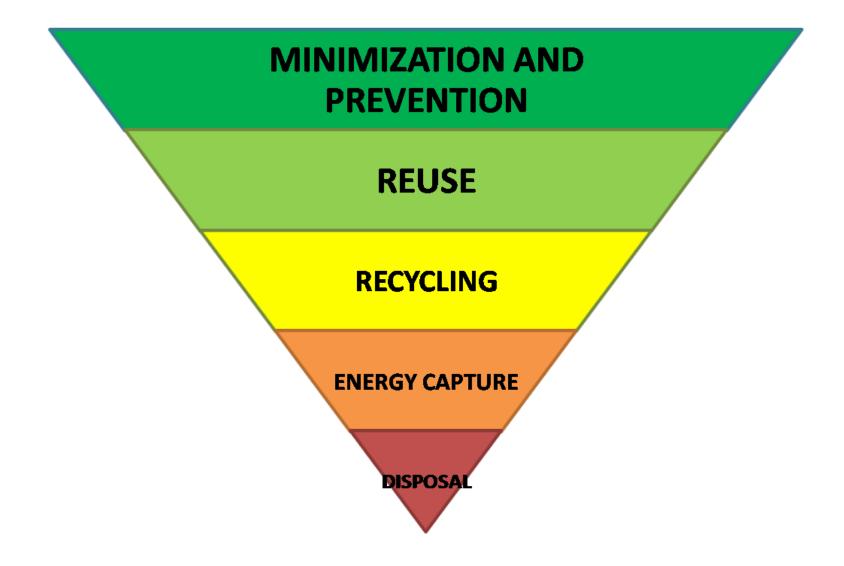
BAU or transformation

• BAU

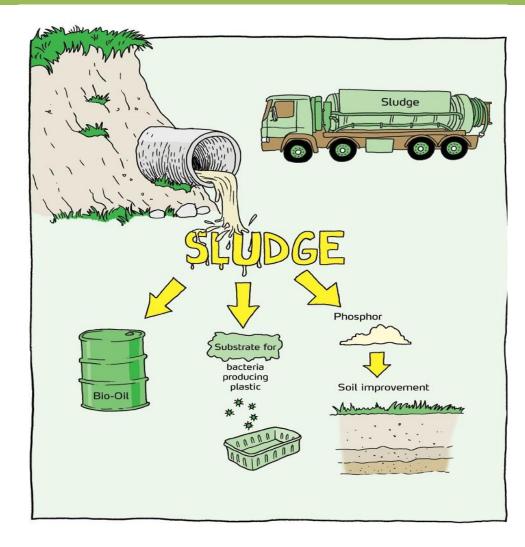
- Left alone a slow growth to 19PJ energy switching
- Occurs as coal plant requires replacement
- Infrequent investment decisions
- Transition
 - Implement NZEECS
 - Increases to only 29PJ
 - A useful step to provide a platform for transormation
- Transformation
 - Can go to 91PJ and reduce 13% of GHG emissions
 - Available if we want to grab the opportunity

Replacing existing serviceable equipment

- Use the coal existing plant
 - Cofiring biomass with coal
 - blending wood pellets
 - Torrifaction to make green coal
 - Process low grade biomass into industrial fuel
- Gradually upgrade existing WWTP
 - Anaerobic treatment
 - Accept trade waste
- Use existing transport fleet and infrastructure
 - Transition to drop in biofuels

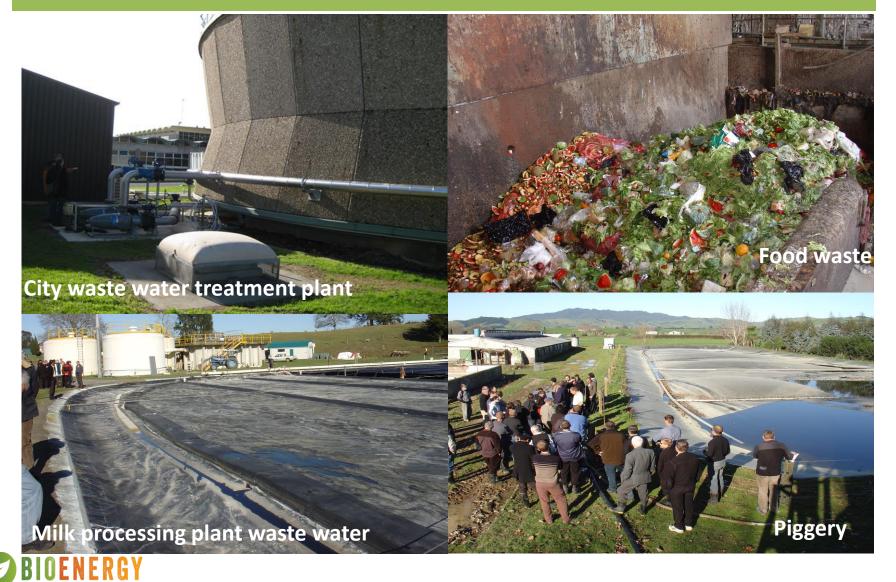


Biomass supply chain reliability


- Develop non traditional biomass fuels
 - Pelletising waste
 - Revise consenting rules to remove fuel limitations
 - Torrifaction to make green coal
- Maximise value from existing biomass sources
 - Strengthen domestic use of wood
 - Strong forestry and wood processing strategy
 - 1 billion trees
 - not just trees in the ground. A great opportunity for biomass supply
- Farms produce food plus fuel
 - Use of agricultural wastes
 - Offset biological emissions
 - Shelter belts, riparian planting, woodlots

Hierarchy of waste pyramid

There is money in muck


Economics

- BAU is positive shows economics not an absolute barrier
- Use govt facilities to demonstrate economics
 - 52% of heat plant are owned by government
 - Government investment based on life cycle
- Focus on life cycle and not least capital cost
- Support local government investments

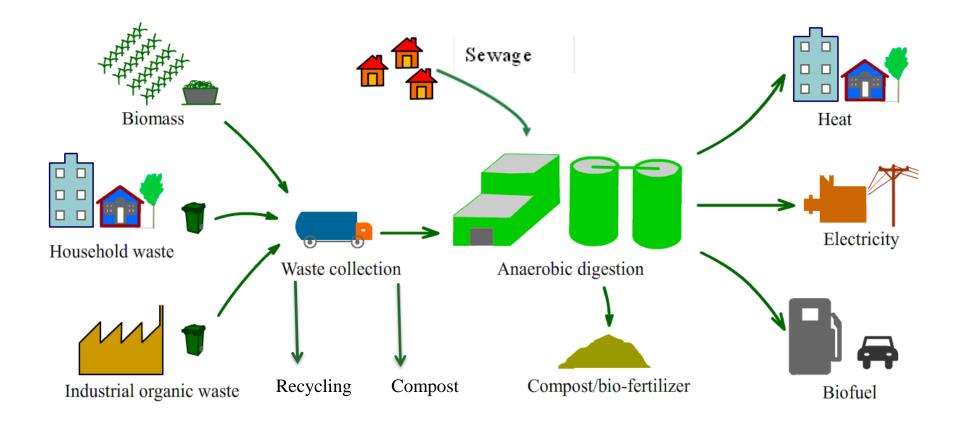
 Potholes not efficiency are the priority for capital expenditure
- Perception of supply chain affects risk analysis

Waste to energy

SSOCIATION

Actions – process heat

- Focus on improving the efficacy of the supply of biomass fuel
 - from plantation forestry, wood processing, and farm forestry
 - use the One billion trees programme to produce future biomass fuel.
- Assist farmers to offset biological emissions by use of bioenergy based activities
 - farm forestry to produce woody biomass fuel,
 - treatment of waste to reduce nutrient runoff to waterways.
- R & D into the treatment and use of non traditional biomass fuels
 - Agricultural biomass eg stover, and their use
 - co-firing with coal as a transition for existing coal plant.
 - Investigate torrifaction of biomass to make green coal.
- Improve regulations and best practice for consenting heat plant
- Guidance on the comparative benefits of alternative process heat technologies.



Actions - Reducing methane emissions from waste

- Establish a National Policy Statement setting a policy of Zero organic waste to landfill by 2040
- Provide guidance, demonstration and assistance to territorial authorities for upgrading and optimising WWTP
 - beneficial treatment of trade wastes providing reduction of emissions and operating costs.
- Provide guidance, demonstration and assistance for use of food waste
 - multi-stream treatment of food and organic waste to produce energy.
- R&D into the high value uses of biogas digestate/biosolids
 - Use of biomethane as a vehicle fuel
 - Biogas as a feedstock for the manufacture of bio-based materials.
 - Validation of the use of anaerobic digestion digestate as a fertiliser
 - Use of WWTP biosolids as a combustion fuel.

Residues to energy value stream

Range of technology options

Liquid biofuels

Landfill gas collection

Bioethanol and biodiesel produced from:

- Dairy processing residues (whey)
- Used cooking oil
- Canola
- Tallow

Biogas from:

- Landfill gas,
- Waste water treatment plant

Future advanced liquid biofuel production from:

- Lignocellulosic material
- Municipal waste

Actions-Use of biofuels by heavy transport

- Provide guidance on the use of biomethane as a vehicle fuel.
- Use imported biofuels as a transition pathway to provide an incentive for domestic manufacture
- Establish specific programmes for marine, heavy road vehicles, rail and aviation so that R&D is demand driven.
- Include production of biofuels within a wider transition to the manufacture of bio-based products within a low emissions economy based on wise use of renewable natural resources.

High value bio-based products

Xylose

\$1.5 Billion Market

- Food Additives
- Xylitol
- Personal Care Products
- Pharmaceuticals

D-XYLOSE FOOD FOOD GRADE LOT NO .: NET WEIGHT: 25 KGS MADE IN CHINA

Lignin

\$64 Billion Market

- PVC Additive
- Adhesive & Epoxy Resins
- Polyurethane
- Carbon Fiber

Cellulose/Ethanol

\$35 Billion Market

- Transportation Fuels
- Fuel Additives
- Solvents
- More Economical Feedstock for Pulp & Paper plants

What is required

- A desire to do more than BAU
- Focus on the opportunities
- Have transformational policies and programmes
- Use current programmes as transition pathways
- Act collectively

