BANZ Webinar, 8 February, 2022

The Potential for Gasification and Pyrolysis of Biomass

Shusheng Pang

Department of Chemical and Process Engineering, Wood Technology Research Centre, University of Canterbury, New Zealand

Outline

- Biomass resources and characteristics
- Biomass gasification:
 - Process and equipment;
 - Technical challenges;
 - Commercial/demonstration plants.
- Biomass pyrolysis:
 - Process and equipment;
 - Technical challenges;
 - Commercial/demonstration plants.
- Recent advances
- Concluding Remarks and Future Perspective

Biomass Resources and Characteristics

Forest residues

- Harvesting;
- Young stems from thinning;
- Damaged trees.

Wood processing residues

- Chips;
- Barks;
- Sawdust.
- Damaged stems
- Demolition wood

A significant quantity of woody biomass is a potential resource for energy, but is still not used. Why?

- Costs
- Maturity of effective technologies
- Market and uses of the biomass derived energy products
- Environmental issues
- Other factors?

Most of these factors are related to inherent characteristics of the material – complex chemical composition and physical structure!

Chemical Composition of Wood (% of Oven-dry Weight)					
	Cellulose	Hemicellulose	Lignin		
Softwoods	40 - 44 (40*)	15 - 35 (31*)	18 - 25 (27*)		
Hardwoods	40 - 44	20 - 32	25 - 35		

*: values in brackets are for radiata pine.

Composition of Wood			
% of Dry mass			
44 - 49			
6 - 6.3			
41.3 – 44			
slight amount			
Ash 0.2 - 1.0			

Heating Values of Woody Biomass

- Lower heating values: 19 MJ/kg dry for pine wood
- High heating value: 20 MJ/kg dry for pine wood
- Comparison to fossil fuels (HHV, MJ/kg):
 - Diesel: 44.8
 - Petrol: 47.3
 - Crude oil (heavy): 43
 - Natural gas: 47
 - Methane (CH₄): 50
 - Coal: 20-30

Biomass Gasification

- A thermochemical process to convert biomass into a gas product (product gas, producer gas or syngas) consisting of H₂, CO, CO₂, CH₄ and other species under a controlled amount of gasification agent (O₂, air, steam).
- Advantages of biomass gasification:
 - High efficiency for energy conversion;
 - Flexibility for the product gas use.
- Operation temperature is lower (700 900°C) compared to combustion, corrosive ash elements in the feedstock (such as bio-wastes) can remain in ash, allowing clean gas production.

Effects of gasification agent

- Air is cheap, but
 - The product gas contains N₂, thus has low heating value (4-7 MJ/nm³).
 - Low energy efficiency.
- Oxygen removes N₂ related problem and product gas has high heating value (12 – 14 MJ/nm³) but
 - High cost for O₂ production.
- Steam (H₂O) also removes N₂ related problem, can enhance gas yield, particularly for H₂, and has high heating value as well, but
 - Needs external heat input reactions overall are endothermic.

Fixed bed gasifier: updraft (counter-current)

- Simple and robust construction.
- High residence time of solids.
- High carbon conversion.
- Producer gas with high level of tars.
- Non-uniform temperature profile within the gasifier.
- Suitable for small to medium scale of 1-10 MWth
 - (200 2000 kg/hr dry biomass feeding)

Fixed bed gasifier: downdraft (co-current)

- Simple and reliable.
- High carbon conversion.
- Tar cracking occurs around the throat which is high temperature zone.
- Produces relatively clean gas.
- It requires low MC biomass.
- Long residence time for solids.
- Non-uniform temperature profile within the gasifier.
- Suitable for small scale of 100 kWth 2 MWth.

Product Gas Quality from Different Types of Gasifiers

	Gas composition, %v/v dry				HHV, MJ/Nm³	Gas quality		
	H_2	CO	CO ₂	CH_4	N_2		Tars	Dust
Fluid bed air-blown	9	14	20	7	50	5.4	Fair	Poor
Updraft, air-blown	11	24	9	3	53	5.5	Poor	Good
Downdraft, air-blown	17	21	13	1	48	5.7	Good	Fair
Downdraft, oxygen-blown	32	48	15	2	3	10.4	Good	Good

Issues for Gasification: Product gas contains tars and contaminant gas species

- Tars in the product gas:
 - High molecular weight organic compounds which are undesirable in the downstream applications of the producer gas.
 - Condensable at reduced temperatures.
- Contaminant gas species:
 - Converted from N (NH₃) and S (H₂S) in the biomass;
 - Can be poisonous for downstream catalyst.
- Research has been focussed on the low cost solutions.
- Product gas quality vs complexity (costs).
- Handling of feedstock variability (density, size, MC).

Gas Composition and Application Requirement

Gas parameter	Gas from the DFB gasifier	Gas for gas engine	Gas for liquid fuel synthesis and syngas production
Calorific value MJ/Nm ³	11-14	>4	NA
H ₂ /CO molar ratio	1-4	NA	2
Particles (soot, dust, ash)	Not measured after cyclone and filter	Free of >5µm	none
Tar, mg/Nm³	2000-9000	Below tar dew point	Below tar dew point
NH ₃ , ppmv	500-1000	≤20	<1
Sulphur (H ₂ S) ppmv	50-150	≤150	<1

Biomass Gasification

Demonstration/Commercialisation Projects

- There are currently around a hundred of biomass energy and biofuel plants in the world (many are at demonstration scale):
 - Most were successful, having achieved the targets.
 - About a quarter were below targets.
 - Some were stopped before commissioning.
 - Some failed during operation.
- Examples of gasification technology suppliers:
 - Güssing Renewable Energy Ltd (<u>https://www.gussingrenewable.com/</u>)
 - Ankur Scientific Energy Technologies Pvt. Ltd. (<u>https://www.ankurscientific.com/</u>)

- Güssing Renewable Energy Ltd owns the Güssing biomass gasification technology (dual fluidised bed system).
- Focus on carbon cycling technologies.
- Has been marketing in EU and established a branch in Thailand, and built a 4 MWth plant in Nong Bua near Bangkok.
- A representative (Janjira Hongrapipat: janjira.hongrapipat@gmail.com) has been promoting the technology in Asia/New Zealand.

Steam Gasification –	Güssing
Demonstration Plant,	Austria

- Start of construction
- Start up

September 2000

- January 2002 (stopped for overhaul)
- Feed fuel
- 2 t/hr, wood chips
- Moisture content in fuel 15 to 35wt%
- Feed capacity

8 MW 2 MW

- Electrical power
- Heat output
- Electrical efficiency
- Overall efficiency
- 20 to 25% 85%

4.5 MW

15

Dual Fluidised Bed Gasification Technology for H&P

- Ankur Scientific Ltd., India, was established in 1986, specialising in waste gasification technologies (mostly fixed bed) for energy.
- Including power and heating systems.
- Marked over 35 countries.
- Gavin Headley (gavinlhedley@gmail.com) has been trying to import the Ankur's technology to New Zealand.
- Ankur contact: ashok.chaudhuri@ankurscientific.com

STEC gasifier project, Samoa

- Capacity 750 kW power
- Feedstock: Forest Residue (woody biomass)
- Technology: Ankur
- Commissioned 2018-19, under operation since then.
- Engineer and Project Manager:

Fonoti Perelini Perelini: perelini48@gmail.com

Advanced Biomass Gasification for H₂-rich Syngas Production

- We developed and constructed a 100kW_{th} dual fluidised bed gasifier.
- Steam is used as gasification agent.

Advantages of the dual fluidised bed (DFB) steam gasification

- The producer gas has high calorific value (11-14 MJ/Nm³) in comparison with producer gas from air gasification (4-7 MJ/Mm³).
- By management of bed material and operation conditions, producer gas can have a wide range of H₂ to CO ratio from 0.9 to 4.1, which provides flexibility for gas applications.
- The dual fluidised bed structure is ideal for inbed CO₂ capture and management.

- Feedstock tested:
 - Wood pellets (radiata pine).
 - Blends of wood pellets and sewage sludge pellets (biosolid).
 - Pellets of biomass and coal blend.
 - Corn Stover, rich husk.
- Bed materials tried:
 - Silica sand.
 - Olivine sand.
 - Calcite.

Selected results from tests on the 100kw DFB steam gasifier							
Bed Material	BFB Temp, °C	H ₂	со	CH ₄	CO2	H ₂ /CO	LHV, MJ/Nm³
100% Greywacke (control)	767	29%	32%	12%	23%	0.9	13.3
100% Olivine	700	35%	29%	12%	19%	1.2	12.9
50% Olivine 50% Calcite	694	40%	20%	12%	23%	2.0	12.8
50% Greywacke 50% Dolomite	699	40%	23%	12%	20%	1.7	13.8
50% Greywacke 50% Calcite	713	50%	18%	11%	18%	2.8	12.3
100% Calcite	716	62%	15%	11%	11%	4.1	12.5
	Bed Material Bed Material 100% Greywacke (control) 100% Olivine 50% Olivine 50% Calcite 50% Greywacke 50% Greywacke 50% Greywacke 50% Calcite	IOUKWBed MaterialBFB Temp, cc100% Greywacke (control)767100% Olivine70050% Olivine 50% Calcite69450% Greywacke 50% Calcite61950% Greywacke 50% Calcite713100% Calcite716	IOOKW DFBBed MaterialBFB Temp, cHz100% Greywacke (control)76729%100% Olivine70035%50% Olivine 50% Calcite69440%50% Greywacke 50% Calcite69940%50% Greywacke 50% Calcite71350%100% Calcite71662%	IOUKW DFB Steal Bed Material BFB Temp, c H ₂ CO 100% Greywacke (control) 767 29% 32% 100% Olivine 700 35% 29% 50% Olivine 50% Calcite 694 40% 20% 50% Greywacke 50% Colomite 699 40% 23% 50% Greywacke 50% Calcite 713 50% 18% 100% Calcite 716 62% 15%	Bed Material BFB Temp, °C H₂ CO CH₄ 100% Greywacke (control) 767 29% 32% 12% 100% Olivine 700 35% 29% 12% 50% Olivine 50% Calcite 694 40% 20% 12% 50% Greywacke 50% Dolomite 699 40% 23% 12% 50% Greywacke 50% Calcite 713 50% 18% 11% 100% Calcite 716 62% 15% 11%	Seed Material BFB Temp, °C H2 CO CH4 CO2 100% Greywacke (control) 767 29% 32% 12% 23% 100% Olivine 700 35% 29% 12% 23% 50% Olivine 50% Calcite 694 40% 20% 12% 23% 50% Greywacke 50% Colomite 699 40% 23% 12% 20% 50% Greywacke 50% Calcite 713 50% 18% 11% 18% 100% Calcite 716 62% 15% 11% 11%	1OUCKW DFB Steam gasifier Bed Material BFB Temp, cc H ₂ CO CH ₄ CO ₂ H ₂ /CO 100% Greywacke (control) 767 29% 32% 12% 23% 0.9 100% Olivine 700 35% 29% 12% 19% 1.2 50% Olivine 50% Calcite 694 40% 20% 12% 23% 2.0 50% Greywacke 50% Dolomite 699 40% 23% 12% 20% 1.7 50% Greywacke 50% Calcite 713 50% 18% 11% 18% 2.8 100% Calcite 716 62% 15% 11% 11% 4.1

Fluidyne Gasification Ltd

- Fluidyne sold overseas its downdraft gasifiers (100kW-2MW).
- Sadly, the founder (Mr Doug Williams) passed away in sudden in 2019.
- The family donated two pilot gasifiers to University of Canterbury.

Agder Biocom-Windsor Engineering Gasifier

- Agder Biocom (Norway) through Windsor Engineering built a 1.5MWth gasifier at Waiariki Institute of Technology in Rotorua in 2010-2011:
 - A training facility for wood processing students at the WIT.
 - Gas is used to replace natural gas for existing boiler to generate steam for two Windsor timber drying kilns.

Biomass Pyrolysis

- Direct thermal decomposition (devolatilization) of the biomass organic components in absence of oxygen to yield vapours (bio-oil when cooled down), noncondensable gases and solid char (bio-char).
- Pyrolysis operation can be classified by residence time, heating rate and pyrolysis temperature.
 - Carbonation, a traditional method for charcoal production.
 - Conventional pyrolysis or slow pyrolysis.
 - Fast pyrolysis, which produces high yield of liquid or gases.

Typical Product Yields (dry feed basis) under Different Conditions in Pyrolysis of Wood

	Charcoal	Liquid	Gas
Fast	12%	75%	13%
Conventional	35%	30%	35%
JAN .			
	See Date	-9/5/1	

Technology	Residence time	Heating rate	Temperature °C	Target products
Carbonation (torrefaction)	Hours to days	Very low	<300	Charcoal
Conventional pyrolysis	5-30 min	Low	400-450	oil, gas, char
Fast pyrolysis*	0.5-5s	High	450-650	bio-oil
Flash-liquid pyrolysis*	< 1 s	High	< 650	bio-oil
Flash-gas pyrolysis [#]	~1 s	High	~650	chemicals, gas
Hydro- pyrolysis	< 10s	High	< 500	bio-oil
(liquefaction)				

Pyrolysis Technologies and Characterisations

*. With rapid cooling of pyrolysis vapours, more bio-oil is formed.

#. With slow cooling of pyrolysis vapours or applying catalysts, more gas is formed.

Characteristics of pyrolysis liquid compared with conventional liquid fuels

		Pyrolysis liquid	Diesel	Heavy fuel oil
Density	kg/m³ at 15°C	1220	854	963
Typical composition	%C	48.5	86.3	86.1
•	%H	6.4	12.8	11.8
	%O	42.5	-	-
	%S	-	0.9	2.1
Viscosity 🔺	cSt at 50°C	13	2.5	351
Flash point	°C	66	70	100
Pour point	°C	-27	-20	21
Ash	%wt	0.13	< 0.01	0.03
Sulphur	%wt	0	0.15	2.5
Water 🔶	%wt	20.5	0.1	0.1
lhv 🗕	MJ/kg	17.5	42.9	40.7
Acidity	рН	3	-	-

Application of the Pyrolysis Liquid

Fast Pyrolysis Reactor

The pyrolysis for bio-oil system needs to have:

- Very high heating rate,
- Well controlled reaction temperature, and
- Rapid cooling or quenching rate of the vapours to liquid product.

Types of reactors:

- Bubbling fluidised bed;
- Circulating fluidised bed;
- Rotating cone.

Rotating Cone System

- Enhance heating transfer between sand and biomass thus uses less inert gas and smaller reactor size.
- Internal separation of gas/vapour phase with solid phase (char and sand).

But:

- Consumes power.
- Equipment wear.

Challenges in Biomass Pyrolysis So-oil production for liquid fuel: Upgrading is a complex and costly process at high pressure/temperatures. Bio-crude at industrial capacity production still needs refining for drop-in liquid fuel. Bio-char production: For solid fuel – comparing with torrefaction. For carbon sequestration and solid amendment – large scale verification. For chemical production: Arge number of species (>200) thus needs huge efforts for upgrading and purification. Needs to demonstrate high value products.

- Ontario ENSYN plant, in Canada.
- Commissioned in 2006 and second phase in 2017
- 3 million gallon (11.4 million L) per year liquid bio-crude.
- Based on circulating fluidised bed technology.

Other Technologies for liquid bio-fuels based on solvent liquefaction

Licella (<u>https://www.licella.com/</u>)

- Steeper Energy (<u>https://steeperenergy.com/</u>)
- Genifuel (<u>http://www.genifuel.com/</u>)

Biomass Pyrolysis Activities in New Zealand

Biomass Pyrolysis Research at University of Canterbury

A joint PhD (X. Xing) project of Scion-UC on catalytic pyrolysis of pretreated wood: Experimental Setup at Scion, Rotorua (0.5-1 kg/hr)

Effects of torrefaction, and combined torrefaction and acid leaching pretreatment

	Dwood	Twood				
			ALTWOOD			
C/B ratio 2.5	500 °C	500 °C	500 °C			
Yields of products, wt.%						
Oil	8	12	10			
Produced water	24	16	18			
Solid	24	32	29			
Gas	39	36	37			
Key propert	ies of oil pro	oduct				
Oxygen content, wt.%	13.2	14.9	13.7			
O/C (mol/mol)	0.12	0.14	0.13			
Main compounds in oil product by GC/MS analysis (%)						
Aromatics	76	77	76			
Aromatics, oxygenated	10	9	9			
Phenols	14	13	14			

Recent Advances

- Integration with CO₂ capture and CO₂ utilisation
- Bio-coke production from torrefaction.
- Biomass densification through pyrolysis for centralised gasification.
- Hydrogen production.

Torrefaction (batch pyrolysis) for Production of Solid Fuel (Bio-coke)

Waste Transformation plant in Timeru.

 Pyrolysis is used as a densification tool to increase the feedstock density. The bio-oil/char slurry is then gasified for production of clean producer gas.

University of Canterbury' entrained flow gasifier (4 kg bio-oil feed/hr)

 \rightarrow Karlsruhe Institute of Technology's BioLiq^R pilot plant (1 tonne biomass/hr).

Hydrogen production from biomass through advanced biomass gasification with CO₂ capture

Challenges in Converting Biomass to Energy and Fuels

- Challenges for commercialisation:
 - Reduction of production cost (better economic returns);
 - Increasing conversion efficiency;
 - Minimizing negative impacts on environments.
- From engineering points of view:
 - Large scale plants have high efficiency and low capital/operating costs for unit product output.
- However, biomass has low density and most available biomass is widely distributed, thus costs of biomass transportation and handling increase with biomass quantity needed for a large scale plant.

Economics hold the key, and

Government financial support for R&D

and demonstration plant is critical!

Acknowledgements

- BANZ (Brian, Anne) for providing this opportunity and support.
- Ministry of Business, Innovation and Employment (MBIE) for research funding.
- Hot Lime Labs for support and collaboration.
- Research team members at University of Canterbury.
- Industry partners and international collaborators.

